Question 13 (10 points)

1. Soit un équilibre établi par deux réactions opposées d'ordre 1,

$$A \overset{k_1}{\underset{k_{1}}{\longleftarrow}} B$$

Si à l'équilibre, la concentration de B est supérieure à celle de A, la valeur de k_1 est nécessairement plus grande que celle de k_1

Consider an equilibrium established by two opposite reactions of order 1,

$$A \overset{k_1}{\rightleftharpoons} B$$

If at equilibrium, the concentration of B is greater than that of A, the value of k_1 is necessarily greater than that of k_{-1}

Vrai

2. La masse volumique d'une solution aqueuse de KCl de 2.74 mol/L est égale à 1.118 kg L⁻¹ à 25°C. Sa concentration est ainsi supérieure à 2.85 molal.

The density of an aqueous solution of KCl of 2.74 mol/L is equal to 1.118 kg L⁻¹ at 25°C. Its concentration is thus greater than 2.85 molal.

VRAI

3. A 25°C, le potentiel chimique de $N_2(g)$ est le même que celui de $NO_2(g)$ lorsque les deux gaz ont la même pression. Considérer que N_2 et NO_2 se comportent comme des gaz parfaits.

At 25°C, the chemical potential of $N_2(g)$ and $NO_2(g)$ are identical if the two gases have the same partial pressure. Consider that N_2 and NO_2 behave like ideal gases. **Faux**

4. L'entropie du mélange ($\Delta_{mix}S$) est plus grande lorsqu'on mélange 0.5 mol de Ar et 0.5 mol de Ne que lorsqu'on mélange 0.1 mol de Ar et 0.9 mol de Ne à température et pression constantes.

The entropy of mixing $(\Delta_{mix}S)$ is greater when mixing 0.5 mol of Ar and 0.5 mol of Ne than when mixing 0.1 mol of Ar and 0.9 mol of Ne at constant temperature and pressure.

Vrai

5. Pour une solution <u>diluée</u> idéale composée d'un solvant A et d'un soluté B volatils, on peut calculer la pression totale de la vapeur avec la formule suivante:

$$P = P_A + P_B = x_A P_A * + (1 - x_A) K_H$$

où x_A est la fraction molaire de A, P_A *la pression de vapeur du solvant pur et K_H est la constante de Henry.

For an ideal <u>dilute</u> solution composed of solvent A and solute B, the total vapor pressure can be calculated with the following formula:

$$P = P_A + P_B = x_A P_A^* + (1 - x_A) K_H$$

where x_A is the mole fraction of A, P_A *the vapor pressure of the pure solvent and K_H is Henry's constant.

VRAI

Question 14 (10 points)

Soit une réaction enzymatique suivant la loi de Michaelis-Menten et dont la constante de vitesse k_{cat} (k_2) est égale à $1.2 \times 10^2 \, s^{-1}$. En l'absence d'inhibiteur et en présence d'une concentration de 10^{-4} M de substrat la vitesse vaut 1.2×10^{-6} M s^{-1} . En présence de 10^{-5} M d'un inhibiteur compétitif, il faut une concentration de 5.0×10^{-4} M de substrat pour atteindre la même vitesse (1.2×10^{-6} M s^{-1}). En sachant que la concentration totale d'enzyme vaut 3.0×10^{-8} M, calculer les paramètres suivants :

- a)V_{max},
- b) K_M
- c) Ki (la constante d'inhibition de l'inhibiteur).

Solution

a)2pts
$$V_{max} = k_{cat} [E]_{tot} = 1.2 \ x \ 10^2 \ x \ 3.0 \ x \ 10^{-8} = 3.6 \ x \ 10^{-6} \ Ms^{-1}$$

b)
$$3pts:K_M$$

 $v = V_{max}/3 = V_{max}$ [S]/ (K_M + [S])
 $K_M + [S] = 3[S]$
 $K_M = 2[S] = 2 \times 10^{-4} M$

c)5pts (
$$\alpha K_M$$
: 3pts, K_i 2pts)

$$\begin{split} S/(\ K_{\text{M}} + S\) &= S'/(\alpha K_{\text{M}} + S') \\ S\ \alpha K_{\text{M}} + SS' &= S'K_{\text{M}} + SS' \\ S\ \alpha K_{\text{M}} &= S'K_{\text{M}} \end{split}$$

$$K_M/[S] = \alpha K_M/[S']$$

$$\alpha K_{M} = K_{M}[S']/[S] = 5 x K_{M}$$

$$\begin{split} 5 &= 1 + [I]/Ki \\ 4 &= [I]/Ki \\ K_i &= [I]/4 = 2.5 \text{ x } 10^{\text{-}6} \text{ M} \end{split}$$

Grading

Vmax: 2 pts

V = k2 [E]0 1pt

Valeur + 1pt (-0.5 pt si erreur de calcul, -0.5 si erreur de signe)

Km 3 pts

MM correct 1pt Resolution + Valeur 2 pts

Ki: 5 pts Partial points:

Problème pose correctement		1pt
	alpha =5	+2 pts
alpha = 1 + [I]/Ki		+1 pts
valeur finale		+1pt

Question 15 (10 points, 4, 2, 2, 2)

La pression osmotique d'une solution aqueuse de saccharose (solution A) vaut 7.3 bar lorsqu'elle est mesurée par rapport à de l'eau pure à 20°C. Le facteur de van't Hoff du saccharose dans l'eau vaut 1 et on suppose que la solution est suffisamment diluée pour avoir un comportement idéal. La masse volumique de cette solution est égale à 1.037 kg L⁻¹ et la masse molaire du saccharose vaut 342 g mol⁻¹.

- a) Calculer la concentration de saccharose dans la solution A en mol L-1
- b) Calculer la fraction molaire de l'eau dans la solution A
- c) Calculer la différence de valeur du potentiel chimique de l'eau entre la solution A et l'eau pure.
- d) On relie la solution A à de l'eau pure par une membrane perméable uniquement aux molécules d'eau dans un osmomètre. Calculer la différence de valeur du potentiel chimique de l'eau entre les deux phases aqueuses à l'équilibre (lorsque le flux osmotique est annulé par la pression hydrostatique de la colonne d'eau).

Solution: (a) 4pts (b) 2pts c (2pts) d(2pts)

```
a) \Pi = RT iM i = 1 iM = c = \Pi/RT = 7.3 \text{ bar/ } (8.314 \text{ x } 10^{-2}) \text{ x } 293 = 0.3 \text{ mol } / \text{ L}
```

b) en considérant la densité, dans 1 L solution, on a 1037 g (0.3 mol saccharose pèsent 102.6 g) Ainsi, il y a 1037 -102.6 g d'eau : 934.4 d'eau : 51.91 mol

la fraction molaire de l'eau est 51.91/(51.91+0.3) = 0.994

```
c)la différence de potentiel chimique de l'eau \Delta \mu_{H2O} = \mu_{H2O}^* + RT ln x_{H2O} - \mu_{H2O}^* = 8.314 \ J \ K^{\text{-1}} \ mol^{\text{-1}} x \ 293 \ K \ ln \ (0.994) = -14.0 \ J/mol \ (\text{-}14.1)
```

Alternativement La fraction molaire du saccharose vaut : $0.3/52.21 = 5.746 \times 10-3 \text{ RT } \ln X_{\text{H2O}} = \text{environ -RTxsaccharose} = 14.0 \text{ J mol-1}$

d) à l'équilibre le potentiel chimique de l'eau est identique dans les deux phases $\Delta\mu_{H2O}=0$